Abstract
AbstractIn this article, we consider a variant of the Dual Reciprocity Method (DRM) for solving boundary value problems based on approximating source terms by polynomials other than the traditional basis functions. The use of pseudo‐spectral approximations and symbolic methods enables us to obtain highly accurate results without solving the often ill‐conditioned equations that occur when radial basis function approximations are used. When the given partial differential equation is either Poisson's equation or an inhomogeneous Helmholtz‐type equation, we are able to obtain either closed form particular solutions or efficient recursive algorithms. Using the particular solutions, we convert the inhomogeneous equations to homogeneous. The resulting homogeneous equations are then amenable to solution by boundary‐type methods such as the Boundary Element Method (BEM) or the Method of Fundamental Solutions (MFS). Using the MFS, we provide numerical solutions to a variety of boundary value problems in R2 and R3. Using this approach, we can achieve high accuracy with a modest number of interpolation and collocation points. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 112–133, 2003
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.