Abstract

This study proposes a new technique for communicating over multiple-input multiple-output (MIMO) frequency selective channels. This approach operates by calculating the QR decomposition of the polynomial channel matrix at the receiver on the basis of channel state information, which in this work is assumed to be perfectly known. This then enables the frequency selective MIMO system to be transformed into a set of frequency selective single-input single-output systems without altering the statistical properties of the receiver noise, which can then be individually equalised. A like-for-like comparison with the orthogonal frequency division multiplexing scheme, which is typically used to communicate over channels of this form, is provided. The polynomial matrix system is shown to achieve improved performance in terms of average bit error rate results, as a consequence of time-domain symbol decoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.