Abstract

The study of Hamiltonian systems is important for space physics and astrophysics. In this paper, we study local behavior of an isolated nilpotent critical point for polynomial Hamiltonian systems. We prove that there are exact three cases: a center, a cusp or a saddle. Then for quadratic and cubic Hamiltonian systems we obtain necessary and sufficient conditions for a nilpotent critical point to be a center, a cusp or a saddle. We also give phase portraits for these systems under some conditions of symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.