Abstract

Let M be a connected sum of complete Riemannian manifolds satisfying the volume doubling condition and the Poincare inequality. We prove that the space of polynomial growth harmonic functions on M is finite dimensional whenever M has finitely many ends and satisfies the finite covering condition on each end. This result directly generalizes that of Tam, and it also partially generalizes that of Colding and Minicozzi II.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.