Abstract
This article explores the observer-based feedback control problem for a nonlinear hyperbolic partial differential equations (PDEs) system. Initially, the polynomial fuzzy hyperbolic PDEs (PFHPDEs) model is established through the utilization of the fuzzy identification approach, derived from the nonlinear hyperbolic PDEs model. Various types of state estimation and controller design problems for the polynomial fuzzy PDEs system are discussed concerning the state estimation problem. To investigate the relaxed stability problem, Euler's homogeneous theorem, Lyapunov-Krasovskii functional with polynomial matrices (LKFPM), and the sum-of-squares (SOSs) approach are adopted. The exponential stabilization condition is formulated in terms of the spatial-derivative-SOSs (SD-SOSs). Additionally, a segmental algorithm is developed to find the feasible solution for the SD-SOS condition. Finally, a hyperbolic PDEs system and several numerical examples are provided to illustrate the validity and effectiveness of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.