Abstract

SummaryThis article is concerned with the polynomial filtering problem for a class of nonlinear stochastic systems governed by the Itô differential equation. The system under investigation involves polynomial nonlinearities, unknown‐but‐bounded disturbances, and state‐ and disturbance‐dependent noises ((x,d)‐dependent noises for short). By expanding the polynomial nonlinear functions in Taylor series around the state estimate, a new polynomial filter design method is developed with hope to reduce the conservatism of the existing results. In virtue of stochastic analysis and inequality technique, sufficient conditions in terms of parameter‐dependent linear matrix inequalities (PDLMIs) are derived to guarantee that the estimation error system is input‐to‐state stable in probability. Moreover, the desired polynomial matrix can be obtained by solving the PDLMIs via the sum‐of‐squares approach. The effectiveness and applicability of the proposed method are illustrated by two numerical examples with one concerning the permanent magnet synchronous motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.