Abstract

MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a CNF formula. We consider a natural generalization of this problem to generic sets of polynomials and propose a weighted version of Polynomial Calculus to address this problem.Weighted Polynomial Calculus is a natural generalization of the systems MaxSAT-Resolution and weighted Resolution. Unlike such systems, weighted Polynomial Calculus manipulates polynomials with coefficients in a finite field and either weights in N or Z. We show the soundness and completeness of weighted Polynomial Calculus via an algorithmic procedure.Weighted Polynomial Calculus, with weights in N and coefficients in F2, is able to prove efficiently that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in Z, it also proves efficiently that the Pigeonhole Principle is minimally unsatisfiable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.