Abstract

Glover and Punnen (J. Oper. Res. Soc. 48 (1997) 502) asked whether there exists a polynomial time algorithm that always produces a tour which is not worse than at least n!/ p( n) tours for some polynomial p( n) for every TSP instance on n cities. They conjectured that, unless P=NP, the answer to this question is negative. We prove that the answer to this question is, in fact, positive. A generalization of the TSP, the quadratic assignment problem, is also considered with respect to the analogous question. Probabilistic, graph-theoretical, group-theoretical and number-theoretical methods and results are used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.