Abstract

Let [Formula: see text] be a commutative ring with identity. Let [Formula: see text] and [Formula: see text] be the collection of polynomials and, respectively, of power series with coefficients in [Formula: see text]. There are a lot of multiplications in [Formula: see text] and [Formula: see text] such that together with the usual addition, [Formula: see text] and [Formula: see text] become rings that contain [Formula: see text] as a subring. These multiplications are from a class of sequences [Formula: see text] of positive integers. The trivial case of [Formula: see text], i.e. [Formula: see text] for all [Formula: see text], gives the usual polynomial and power series ring. The case [Formula: see text] for all [Formula: see text] gives the well-known Hurwitz polynomial and Hurwitz power series ring. In this paper, we study divisibility properties of these polynomial and power series ring extensions for general sequences [Formula: see text] including UFDs and GCD-domains. We characterize when these polynomial and power series ring extensions are isomorphic to each other. The relation between them and the usual polynomial and power series ring is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call