Abstract

Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) polymer brushes of fixed molecular weight and grafting density are modeled in the framework of a coarse-grained model with soft, nonbonded interactions and an implicit solvent. This model has been developed to address experimentally relevant, large invariant degrees of polymerization, and nonbonded interactions are expressed via a third-order (virial) expansion of the equation of state. The choice of interaction parameters is intended to mimic the swelling behavior of PNIPAM in water as the temperature increases toward the lower critical solution temperature (T(LCST)). Results of molecular dynamics simulations for one component brushes are compared to experimental data. Mixed brushes incorporating small and large amounts of grafted poly(ethylene glycol) polymers are then considered. The effects of mixing polymer components on the response of the mixed brushes to temperature changes are monitored, and the results are compared to experimental data. In the end, two design principles for biomolecule triggering using temperature-sensitive mixed polymer brushes with functional and switchable end-groups are proposed and studied. This work is in favor of establishing qualitative rules for the design, optimization, and comprehension of binary polymer brushes for bioengineering purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.