Abstract

Until plasmid-mediated mcr-1 was discovered, it was believed that polymyxin resistance in Gram-negative bacteria was mainly mediated by the chromosomally-encoded EptA and ArnT, which modify lipid A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), respectively. This study aimed to construct a markerless mcr-1 deletion mutant in Klebsiella pneumoniae, validate a reliable reference gene for reverse transcription quantitative PCR (RT-qPCR) and investigate the interactions among mcr-1, arnT and eptA, in response to polymyxin treatments using pharmacokinetics/pharmacodynamics (PK/PD). An isogenic markerless mcr-1 deletion mutant (II-503Δmcr-1) was generated from a clinical K. pneumoniae II-503 isolate. The efficacy of different polymyxin B dosage regimens was examined using an in vitro one-compartment PK/PD model and polymyxin resistance was assessed using population analysis profiles. The expression of mcr-1, eptA and arnT was examined using RT-qPCR with a reference gene pepQ, and lipid A was profiled using LC-MS. In vivo polymyxin B efficacy was investigated in a mouse thigh infection model. In K. pneumoniae II-503, mcr-1 was constitutively expressed, irrespective of polymyxin exposure. Against II-503Δmcr-1, an initial bactericidal effect was observed within 4 h with polymyxin B at average steady-state concentrations of 1 and 3 mg/L, mimicking patient PK. However, substantial regrowth and concomitantly increased expression of eptA and arnT were detected. Predominant l-Ara4N-modified lipid A species were detected in II-503Δmcr-1 following polymyxin B treatment. This is the first study demonstrating a unique markerless deletion of mcr-1 in a clinical polymyxin-resistant K. pneumoniae. The current polymyxin B dosage regimens are suboptimal against K. pneumoniae, regardless of mcr, and can lead to the emergence of resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call