Abstract
Resistance to several anti-malarial drugs has been associated with polymorphisms within the P-glycoprotein homologue (Pgh-1, PfMDR1) of the human malaria parasite Plasmodium falciparum. Pgh-1, coded for by the gene pfmdr1, is predominately located at the membrane of the parasite's digestive vacuole. How polymorphisms within this transporter mediate alter anti-malarial drug responsiveness has remained obscure. Here we have functionally expressed pfmdr1 in Xenopus laevis oocytes. Our data demonstrate that Pgh-1 transports vinblastine, an established substrate of mammalian MDR1, and the anti-malarial drugs halofantrine, quinine and chloroquine. Importantly, polymorphisms within Pgh-1 alter the substrate specificity for the anti-malarial drugs. Wild-type Pgh-1 transports quinine and chloroquine, but not halofantrine, whereas polymorphic Pgh-1 variants, associated with altered drug responsivenesses, transport halofantrine but not quinine and chloroquine. Our data further suggest that quinine acts as an inhibitor of Pgh-1. Our data are discussed in terms of the model that Pgh-1-mediates, in a variant-specific manner, import of certain drugs into the P. falciparum digestive vacuole, and that this contributes to accumulation of, and susceptibility to, the drug in question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.