Abstract

IntroductionUncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria. ROS overproduction is one of the major contributors to the pathogenesis of chronic diabetic complications, such as diabetic kidney disease (DKD). Thus, deleterious polymorphisms in the UCP2 gene are candidate risk factors for DKD. In this study, we investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with DKD in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies.Materials and MethodsIn a case-control study, frequencies of the UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms as well as frequencies of the haplotypes constituted by them were analyzed in 287 T2DM patients with DKD and 281 T2DM patients without this complication. In a cross-sectional study, UCP2 gene expression was evaluated in 42 kidney biopsy samples stratified according to the presence of the UCP2 mutated -866A/55Val/Ins haplotype.ResultsIn the T2DM group, multivariate logistic regression analysis showed that the -866A/55Val/Ins haplotype was an independent risk factor for DKD (OR = 2.136, 95% CI 1.036–4.404), although neither genotype nor allele frequencies of the individual polymorphisms differed between case and control groups. Interestingly, T2DM patients carrying the mutated haplotype showed decreased estimated glomerular filtration rate (eGFR) when compared to subjects with the reference haplotype (adjusted P= 0.035). In kidney biopsy samples, UCP2 expression was significantly decreased in UCP2 mutated haplotype carriers when compared to kidneys from patients with the reference haplotype (0.32 ± 1.20 vs. 1.85 ± 1.16 n fold change; adjusted P< 0.000001).DiscussionData reported here suggest that the UCP2 -866A/55Val/Ins haplotype is associated with an increased risk for DKD and with a lower eGFR in T2DM patients. Furthermore, this mutated haplotype was associated with decreased UCP2 gene expression in human kidneys.

Highlights

  • Uncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria

  • We investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies

  • In the T2DM group, multivariate logistic regression analysis showed that the -866A/55Val/ Ins haplotype was an independent risk factor for DKD (OR = 2.136, 95% CI 1.036–4.404), neither genotype nor allele frequencies of the individual polymorphisms differed between case and control groups

Read more

Summary

Introduction

Uncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria. ROS overproduction is one of the major contributors to the pathogenesis of chronic diabetic complications, such as diabetic kidney disease (DKD). Deleterious polymorphisms in the UCP2 gene are candidate risk factors for DKD. We investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with DKD in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies.

Materials and Methods
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call