Abstract

Introduction: High dose methotrexate (HD-Mtx) is highly effective and significantly improves overall acute lymphoblastic leukemia (ALL) patients survival. The pharmacodynamics of Mtx depends on the polymorphism of genes encoding proteins engaged in the folate metabolism pathway. The aim of the current study is to determine the relationship between variants of folate metabolism-related genes and the frequency of acute toxicities of HD-Mtx.Material and Methods: A group of 133 patients aged 1.5–18.1 years (median: 6.3) was treated in accordance with the ALL-IC-2002 and ALL-IC-2009 protocols. The following polymorphisms were determined: 80 G>A SLC19A1 (solute carrier family 19 member 1; rs1051266) with direct DNA sequencing, as well as 677 C>T MTHFR (methylenetetrahydrofolate reductase; rs1801133) and the tandem repeats of the TS (thymidylate synthase) with PCR technique. HD-Mtx organ toxicities were evaluated based on the laboratory tests results and the National Cancer Institute criteria.Results: In patients with genotypes AA for SLC19A1 and CC or CT for MTHFR Mtx steady state concentrations (Css) and AUCinf were distinctly higher. In patients with genotype 3R/3R for TS initial elimination rate constant was significantly higher (P = 0.003). Patients receiving Mtx at the dose of 5 g/m2 had lower clearance (4.35 vs. 8.92 L/h/m2) as compared to the ones receiving 2 g/m2 that indicates non-linear Mtx elimination at the higher dose. Liver impairment was the most frequently observed toxicity. The homozygous genotype was associated with a significantly higher incidence of hepatic toxicity for both the SLC19A1 (P = 0.037) and TS (P = 0.002). Logistic regression analysis indicated an increased risk of vomiting for the 2R/3R genotype of the TS gene (OR 3.20, 95% CI 1.33–7.68, P = 0.009) and for vomiting and hepatic toxicity for the 3R/3R genotype (vomiting: OR 3.39, 95% CI 1.12–10.23, P = 0.031; liver toxicity: OR 2.28, 95% CI 1.05–4.95, P = 0.038). None of the acute toxicities differed between the analyzed dosing groups.Conclusions: Determination of polymorphisms of SLC19A1, MTHFR, and TS genes might allow for a better prior selection of patients with higher risk of elevated Mtx levels. Our study is the first one to report the increased risk of hepatotoxicity and vomiting in patients with TS polymorphisms.

Highlights

  • High dose methotrexate (HD-Mtx) is highly effective and significantly improves overall acute lymphoblastic leukemia (ALL) patients survival

  • The aims of the current study were to assess the prevalence of SLC19A1 80 G>A and methylenetetrahydrofolate reductase (MTHFR) 677 C>T genes polymorphisms as well as thymidylate synthase (TS) gene tandem repeats in the group of children treated due to Acute lymphoblastic leukemia (ALL) and its influence on Mtx pharmacokinetics and incidence of acute toxicities caused by high doses (HD)-Mtx

  • The results of our study suggest that determination of the TS gene polymorphism in pediatric population may have significant clinical implications in predicting liver impairment associated with HD-Mtx

Read more

Summary

Introduction

High dose methotrexate (HD-Mtx) is highly effective and significantly improves overall acute lymphoblastic leukemia (ALL) patients survival. Well-known risk factors of toxicity after prolonged Mtx exposition include drug-drug interactions, insufficient prehydratation, older age, obesity or so called “third space fluid collections.”. They do not explain all the changes observed in pharmacokinetics (PK) of Mtx in patients with childhood ALL. Mtx does not directly inhibit MTHFR function, the activity of this enzyme is crucial for the body resources of tetrahydrofolate, that are necessary in DNA synthesis, as well as in methylation of DNA, lipids and proteins, including transformation of homocysteine into methionine.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call