Abstract

In animal breeding, selection based on growth is very often used, as this trait affects the profitability of animal production. Identification of polymorphisms within the genes affecting the growth process seems to be very important. Therefore, we decided to analyse rabbit myogenin (<em>MyoG</em> gene) for potential polymorphic sites and their association with growth and carcass traits in Termond White (TER), Belgian Giant Grey (BGG) and crossbred New Zealand White×Belgian Giant Grey (NZW×BGG) rabbits. We found three single nucleotide polymorphisms (SNPs) – in 5’ upstream sequence g.68679476 C>T, in exon 1 – silent mutation g.68680096 T>C and g.68680097 G>A resulting in change of GTG triplet (valine) into ATG triplet (methionine). Association analysis showed that GG genotype weaning weight was statistically higher compared to GA in TER population (<em>P</em>=0.005), and that the hind parts for GG genotypes were heavier compared to those of GA (<em>P</em>=0.024), but association analysis of dissectible parts showed this was caused by higher bone weight (<em>P</em>=0.015). For g.68679476 C>T in NZW×BGG population, the CC genotypes for fore (678±35) and hind part (615±29) weights were heavier compared to CT (588±16 and 549±13, respectively); moreover, association analysis of dissectible parts showed that weight of dissectible meat in hind part. Unfortunately, we did not find similar associations for other analysed breeds. For g.68679476 C>T in NZWxBGG musculus longissimus lumborum pH leg after 24 h chilling (pH24L) were statistically lower for CC genotypes compared to CT (<em>P</em>=0.027). For g.68680097 G>A in Termond White population L* value on the hind leg after 24 h chilling (L*24H) was higher for GA genotypes compared to GG (<em>P</em>=0.03), while for g.68679476 C>T for musculus longissimus lumborum L* value after 24 h (L*24L) CC genotypes had higher value compared to CT (<em>P</em>=0.016) in BGG population. Moreover, in BGG population CT genotypes had higher weaning weight compared to CC (<em>P</em>=0.018). Our results show that SNPs within the <em>MyoG </em>gene may influence growth traits in some rabbit breeds, but the evolutionary conserved sequence may not be favourable for changes within coding sequences. For a better understanding thereof, additional analysis is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.