Abstract

BackgroundTick-borne encephalitis virus (TBEV) infections can be asymptomatic or cause moderate to severe injuries of the nervous system. We previously reported that a nonfunctional chemokine receptor 5 (CCR5) and a functional Toll-like receptor 3 (TLR3) predispose adults to clinical tick-borne encephalitis (TBE). This study expands our previous findings and further examines polymorphisms in CCR5 and TLR3 genes in different age and disease severity groups.Methods117 children and 129 adults, stratified into mild, moderate and severe forms of TBE, and 103 adults with severe TBE were analyzed. 135 healthy individuals and 79 patients with aseptic meningoencephalitis served as controls. CCR5 delta 32 and rs3775291 TLR3 genotypes were established by pyrosequencing, and their frequencies were analyzed using recessive genetic, genotype and allelic models.FindingsThe prevalence of CCR5Δ32 homozygotes was higher in children (2.5%), in adults with severe TBE (1.9%), and in the combined cohort of TBE patients (2.3%) than in controls (0%) (p<0.05). The nonfunctional homozygous TLR3 genotype was less prevalent among the combined TBE cohort (11.5%) than among controls (19.9%) (p = 0.025), but did not differ between children TBE and controls. The genotype and allele prevalence of CCR5 and TLR3 did not differ in children nor adult TBE cohorts stratified by disease severity. However, in the severe adult TBE cohort, homozygous functional TLR3 genotype and wt allele were less prevalent compared to the adult cohort with the whole disease severity spectrum (44.4% vs 59.8% p = 0.022 and 65.2% vs 76.4% p = 0.009; respectively).ConclusionsIndependently of age, nonfunctional CCR5Δ32 mutation is a significant risk factor for development of clinical TBE, but not for disease severity. The polymorphism of TLR3 gene predisposes to clinical TBE in adults only and may be associated with disease severity. Further studies are needed to clarify the role of these polymorphisms in susceptibility to TBEV infection.

Highlights

  • Tick-borne encephalitis (TBE) is a zoonotic disease caused by a RNA virus of the genus Flavivirus within the family Flaviviridae

  • Further studies are needed to clarify the role of these polymorphisms in susceptibility to Tick-borne encephalitis virus (TBEV) infection

  • The prevalence of CCR5D32 homozygotes was higher in the children tick-borne encephalitis (TBE) cohort (2.5% (3/117) than in the Lithuanian TBEVnaive control (0% (0/134) and in the aseptic meningoencephalitis (AME) cohort (0% (0/76)

Read more

Summary

Introduction

Tick-borne encephalitis (TBE) is a zoonotic disease caused by a RNA virus of the genus Flavivirus within the family Flaviviridae. Like Japanese encephalitis virus and West Nile virus (WNV), TBE virus (TBEV) is one of the major neurotropic flaviviruses [1]. After replication in the lymph nodes, TBE viruses pass into the blood stream. In the majority of cases the TBEV infection is terminated at the extraneural stage, in some cases high virus replication in the primarily affected organs leads to a progressive infection when TBEV crosses the blood-brain barrier and invades the brain [4]. Tick-borne encephalitis virus (TBEV) infections can be asymptomatic or cause moderate to severe injuries of the nervous system. We previously reported that a nonfunctional chemokine receptor 5 (CCR5) and a functional Toll-like receptor 3 (TLR3) predispose adults to clinical tick-borne encephalitis (TBE). This study expands our previous findings and further examines polymorphisms in CCR5 and TLR3 genes in different age and disease severity groups

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call