Abstract

The specific features of the transformation of risperidone polymorphs as a result of micronization and encapsulation into aliphatic polyesters (polylactides and polylactoglycolide) have been studied using supercritical (SC) carbon dioxide. It has been shown that the micronization of risperidone, which originally is polymorph A, via the rapid expansion of supercritical solutions (RESS) and the supercritical antisolvent (SAS) precipitation leads to its crystallization in less thermodynamically stable polymorph B. This transition is complete for SAS and only partial for RESS. When these micronized samples are encapsulated into polylactides and polylactoglycolides via the formation of particles from gas-saturated solutions (PGSS) and monolithization with further cryogrinding (MCG), risperidone polymorph B is partially converted back into polymorph A. At the same time, the micronization of initial risperidone polymorph A via cryogrinding and its further PGSS and MCG encapsulation into polylactides or polylactoglycolides does not result in any change in the polymorphic state of risperidone, and it always remains in initial polymorph A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.