Abstract

We analysed a diploid population model with a mixed breeding system that includes panmixia and apomixis. Each individual produces a part (ss) of its progeny by random mating, the remainder (1- ss) being a result of precise copying (vegetative reproduction or apomixis) of the parental genotype. Both constant and periodically varying selection regimes were considered. In the main model, the selected trait was controlled by two diallelic additive or semidominant loci,A /a and B/b, whereas the parameter of breeding system (ss) was genotype-independent. A numerical iteration of the evolutionary equations were used to evaluate the proportion (V) of population trajectories converging to internal (polymorphic) fixed points. The results were the following. (a) A complex pattern of dependence of polymorphism stability on interaction among the breeding system, recombination rate, and the genetic architecture of the selected trait emerged. (b) The recombination provided some advantage to sex at intermediate period lengths and strong-to-moderate selection intensities. (c) The complex limiting behavior (CLB) was quite compatible with sexual reproduction, at least within the framework of pure genetic (not including variations in population density) models of multilocus varying selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.