Abstract

A weak association between amyloid β (Aβ) deposition and neurodegeneration biomarkers, such as brain atrophy, has been repeatedly reported in a subset of patients with Alzheimer disease, suggesting individual differences in response to Aβ deposition. Here, we performed a genome-wide interaction study to identify single-nucleotide polymorphism (SNP) that modify the effect of Aβ (measured by 18F-florbetapir positron emission tomography) on brain atrophy (measured by cortical thickness using magnetic resonance imaging). We used magnetic resonance imaging, positron emission tomography, cerebrospinal fluid, and genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database [discovery cohort, ADNI-GO/2 (n=723) and replication cohort, ADNI-1 (n=129)]. We identified a genome-wide suggestive interaction of rs3807779 SNP (β=-0.14, SE=0.029, P=9.08×10-7) in the discovery cohort. The greater dosage of rs3807779 SNP increased the detrimental effect of Aβ deposition on cortical thickness. In replication analyses, the congruent results were replicated to confirm our findings. Furthermore, rs3807779 SNP augmented the detrimental effect of Aβ deposition on cognitive function. Genetic profiling showed that rs3807779 has chromatin interactions with the promoter region of MAGI2 gene, suggesting its association with MAGI2 expression. These findings demonstrate that subjects carrying the rs3807779 SNP are more susceptible to Aβ-related neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.