Abstract

We observed variations in the metabolism of diazepam in Wistar rats. We studied these variations carefully, and found that the variations are dimorphic and about 17% of male rats of Wistar strain we examined showed two times higher diazepam metabolic activities in their liver microsomes than the rest of animals at the substrate concentrations less than 5 μM. We classified them as extensive metabolizer (EM) and poor metabolizer (PM) of diazepam. No sex difference was observed in the frequency of appearance of EM. Activities of the primary metabolic pathways of diazepam were examined to elucidate the cause of this polymorphism in male Wistar rats. No significant differences were observed in activities of neither diazepam 3-hydroxylation or N-desmethylation between EM and PM rats, while activity of diazepam p-hydroxylation was markedly (more than 200 times) higher in EM rats, indicating that this reaction is responsible for the polymorphism of diazepam metabolism in Wistar rats. We examined the expression levels of CYP2D1, which was reported to catalyze diazepam p-hydroxylation in Wistar rats to find no differences in the expression levels of CYP2D1 between EM and PM rats. The kinetic study on diazepam metabolism in male Wistar rats revealed that EM rats had markedly higher Vmax and smaller Km in diazepam p-hydroxylation than those of PM rats, indicating the presence of high affinity high capacity p-hydroxylase enzyme in EM rats. As a consequence, at low concentrations of diazepam, major pathways of diazepam metabolism were p-hydroxylation and 3-hydroxylation in male EM rats, while in male PM rats, 3-hydroxylation followed by N-desmethylation. Due to this kinetic nature of p-hydroxylase activity, EM rats had markedly higher total CLint of diazepam than that of PM rats. Polymorphism in diazepam metabolism in humans is well documented, but this is the first report revealing the presence of the polymorphism in diazepam metabolism in rats. The current results infer polymorphic expression of new diazepam p-hydroxylating enzyme with lower Km than CYP2D1 in EM Wistar rats. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1271–1278, 2004

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.