Abstract
It has been assumed that the association between Alzheimer disease (AD) and pesticides may be stronger among genetically susceptible individuals. The aim of the study was to examine the genetic polymorphism in cytochrome P450 2D6 (CYP2D6) and glutathione S-transferases pi 1 (GSTP1) with respect to organochlorine pesticides (OCPs) and metals in AD. This study included 100 patients with AD and 100 age-matched controls. The genetic polymorphisms were analyzed by restriction fragment length polymorphism. The OCPs and serum metal levels were determined using gas chromatography and an autoanalyzer, respectively. We found a statistically significant association between AD and high levels of β-hexachlorocyclohexane (β-HCH; odds ratio [OR] = 2.064, 95% confidence intervals [95% CIs] = 1.373-3.102, dieldrin [OR = 2.086, 95% CI = 1.224-3.555], and copper [OR = 1.038, 95% CI = 1.012-1.064). The significant low level of magnesium (OR = 0.151, 95% CI = 0.047-0.489) even appears to have a protective role against AD. The GSTP1*B (P = .009) and GSTP1*C (P = .011) allelic variants were associated with increase in AD risk. This study demonstrates that the GSTP1*B and *C allelic variants may be considered a candidate gene for AD. It can be suggested that although CYP2D6*4 polymorphism is not a risk of AD, the CYP2D6*4 and GSTP1 polymorphism may interact with β-HCH, dieldrin, and copper to influence the risk of AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.