Abstract
In several Drosophila species there is a trait known as "sex-ratio": males carrying certain X chromosomes (called "SR") produce female biased progenies due to X-Y meiotic drive. In Drosophila mediopunctata this trait has a variable expression due to Y-linked suppressors of sex-ratio expression, among other factors. There are tow types of Y chromosomes (suppressor and nonsuppressor) and two types of SR chromosomes (suppressible and unsuppressible). Sex-ratio expression is suppressed in males with the SRsuppressible/Ysuppressor genotype, whereas the remaining three genotypes produce female biased progenies. Now we have found that approximately 10-20% of the Y chromosomes from two natural populations 1500 km apart are suppressors of sex-ratio expression. Preliminary estimates indicate that Ysuppressor has a meiotic drive advantage of 6% over Ynonsuppressor. This Y polymorphism for a nonneutral trait is unexpected under current population genetics theory. We propose that this polymorphism is stabilized by an equilibrium between meiotic drive and natural selection, resulting from interactions in the population dynamics of X and Y alleles. Numerical simulations showed that this mechanism may stabilize nonneutral Y polymorphisms such as we have found in D. mediopunctata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.