Abstract
Growth traits are influential factors that significantly affects the development of the sheep industry. A previous TMT proteomic analysis found that a key protein in the HIF signaling pathway, ARNT, may influence embryonic skeletal muscle growth and development in sheep. The purpose of this study was to better understand the association between the polymorphisms of ARNT and growth traits of sheep, and the potential function of ARNT. Real-time qPCR (qRT-PCR) of ARNT was carried out to compare its expression in different developmental stages of the muscle tissues and primary myoblasts in the Hu, Chinese merino, and Gangba sheep. The genetic variance of ARNT was detected using the Illumina Ovine SNP 50 K and 600 K BeadChip in the Hu and Ujimqin sheep populations, respectively. The CDS sequence of the ARNT gene was cloned in the Hu sheep using PCR technology. Finally, bioinformatic analytical methods were applied to characterize the genes and their hypothetical protein products. The qRT-PCR results showed that the ARNT gene was expressed significantly in the Chinese merino embryo after 85 gestation days (D85) (p < 0.05). Additionally, after the sheep were born, the expression of ARNT was significant at the weaning stage of the Hu sheep (p < 0.01). However, there was no difference in the Gangba sheep.In addition, six SNP loci were screened using 50 K and 600 K BeadChip. We found a significant association between rs413597480 A > G and the Hu sheep weight at weaning and backfat thickness in the 5-month-old sheep (p < 0.05), and four SNP loci (rs162298018 G > C, rs159644025 G > A, rs421351865 G > A, and rs401758103 A > G) were also associated with growth traits in the Ujimqin sheep (p < 0.05). Interestingly, we found that a G > C mutation at 1948 bp in the cloned ARNT CDS sequence of the Hu sheep was the same locus mutation as rs162298018 G > C identified using the 600 K BeadChip, which resulted in a nonconservative missense point mutation, leading to a change from proline to alanine and altering the number of DNA, protein-binding sites, and the α-helix of the ARNT protein. There was a strong linkage disequilibrium between rs162298018 G > C and rs159644025 G > A, and the ARNT protein was conserved among the goat, Hu sheep, and Texel sheep. And, we propose that a putative molecular marker for growth and development in sheep may be the G > C mutation at 1948 bp in the CDS region of the ARNT gene. Our study systematically analyzed the expression, structure, and function of the ARNT gene and its encoded proteins in sheep. This provides a basis for future studies of the regulatory mechanisms of the ARNT gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.