Abstract
Polymorphism and phase transitions in sodium diuranate, Na2U2O7, are investigated with density functional perturbation theory (DFPT). Thermal properties of crystalline α-, β- and γ-Na2U2O7 polymorphs are predicted from DFPT phonon calculations, i.e., the first time for the high-temperature γ-Na2U2O7 phase (R3̄m symmetry). The standard molar isochoric heat capacities predicted within the quasi-harmonic approximation are for P21/a α-Na2U2O7 and C2/m β-Na2U2O7, respectively. Gibbs free energy calculations reveal that α-Na2U2O7 (P21/a) and β-Na2U2O7 (C2/m) are almost energetically degenerate at low temperature, with β-Na2U2O7 becoming slightly more stable than α-Na2U2O7 as temperature increases. These findings are consistent with XRD data showing a mixture of α and β phases after cooling of γ-Na2U2O7 to room temperature and the observation of a sluggish α → β phase transition above ca. 600 K. A recently observed α-Na2U2O7 structure with P21 symmetry is also shown to be metastable at low temperature. Based on Gibbs free energy, no direct β → γ solid-solid phase transition is predicted at high temperature, although some experiments reported the existence of such phase transition around 1348 K. This, along with recent experiments, suggests the occurrence of a multi-step process consisting of initial β-phase decomposition, followed by recrystallization into γ-phase as temperature increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.