Abstract
The dog is considered to be a useful biomedical model for human diseases and disorders, including obesity. One of the numerous genes associated with human polygenic obesity is MC4R, encoding the melanocortin 4 receptor. The aim of our study was to analyze polymorphisms and methylation of the canine MC4R in relation to adiposity. Altogether 270 dogs representing four breeds predisposed to obesity: Labrador Retriever (n = 187), Golden Retriever (n = 38), Beagle (n = 28) and Cocker Spaniel (n = 17), were studied. The dogs were classified into three groups: lean, overweight and obese, according to the 5-point Body Condition Score (BCS) scale. In the cohort of Labradors a complete phenotypic data (age, sex, neutering status, body weight and BCS) were collected for 127 dogs. The entire coding sequence as well as 5′ and 3′-flanking regions of the studied gene were sequenced and six polymorphic sites were reported. Genotype frequencies differed considerably between breeds and Labrador Retrievers appeared to be the less polymorphic. Moreover, distribution of some polymorphic variants differed significantly (P < 0.05) between small cohorts with diverse BCS in Golden Retrievers (c.777T>C, c.868C>T and c.*33C>G) and Beagles (c.-435T>C and c.637G>T). On the contrary, in Labradors no association between the studied polymorphisms and BCS or body weight was observed. Methylation analysis, using bisulfite DNA conversion followed by Sanger sequencing, was carried out for 12 dogs with BCS = 3 and 12 dogs with BCS = 5. Two intragenic CpG islands, containing 19 cytosines, were analyzed and the methylation profile did not differ significantly between lean and obese animals. We conclude that an association of the MC4R gene polymorphism with dog obesity or body weight is unlikely, in spite of the fact that some associations were found in small cohorts of Beagles and Golden Retrievers. Also methylation level of this gene is not related with dog adiposity.
Highlights
Since dogs share the same environment and lifestyle with humans they are susceptible to the same civilizationrelated diseases and among them obesity has become an emerging health problem in both species
According to the MatInspector software the appearance of c.-435T>C polymorphism introduces a consensus sequence for the cell cycle-dependent element (CDE) for the CDF-1 factor, which plays a role in cell cycle regulation [22]
Association of DNA polymorphisms with dogs’ predisposition to obesity is still poorly recognized. Until now such results have been described for the TNF [23], POMC [14, 24], MC4R [16] and GPR120 [25] genes
Summary
Since dogs share the same environment and lifestyle with humans they are susceptible to the same civilizationrelated diseases and among them obesity has become an emerging health problem in both species. An overall obesity rate in dogs ranges from 25.0% in Australia to 59.3% in UK [1,2,3,4,5]. It may be underestimated, because in certain breeds (e.g. Labrador Retriever) individuals considered as being in a good body condition are overweight [6]. Except for obvious positive outcomes for dogs’ welfare itself, the reason to study obesity in this species is due to its model role for human diseases and their therapies [7]. A meta-analysis revealed an association of several DNA variants located within the MC4R gene or in its vicinity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.