Abstract

BackgroundEighteen imported ovale malaria cases imported from Myanmar and various African countries have been reported in Yunnan Province, China from 2013 to 2018. All of them have been confirmed by morphological examination and 18S small subunit ribosomal RNA gene (18S rRNA) based PCR in YNRL. Nevertheless, the subtypes of Plasmodium ovale could not be identified based on 18S rRNA gene test, thus posing challenges on its accurate diagnosis. To help establish a more sensitive and specific method for the detection of P. ovale genes, this study performs sequence analysis on k13-propeller polymorphisms in P. ovale.MethodsDried blood spots (DBS) from ovale malaria cases were collected from January 2013 to December 2018, and the infection sources were confirmed according to epidemiological investigation. DNA was extracted, and the coding region (from 206th aa to 725th aa) in k13 gene propeller domain was amplified using nested PCR. Subsequently, the amplified products were sequenced and compared with reference sequence to obtain CDS. The haplotypes and mutation loci of the CDS were analysed, and the spatial structure of the amino acid peptide chain of k13 gene propeller domain was predicted by SWISS-MODEL.ResultsThe coding region from 224th aa to 725th aa of k13 gene from P. ovale in 83.3% of collected samples (15/18) were amplified. Three haplotypes were observed in 15 samples, and the values of Ka/Ks, nucleic acid diversity index (π) and expected heterozygosity (He) were 3.784, 0.0095, and 0.4250. Curtisi haplotype, Wallikeri haplotype, and mutant type accounted for 73.3% (11/15), 20.0% (3/15), and 6.7% (1/15). The predominant haplotypes of P. ovale curtisi were determined in all five Myanmar isolates. Of the ten African isolates, six were identified as P. o. curtisi, three were P. o. wallikeri and one was mutant type. Base substitutions between the sequences of P. o. curtisi and P. o. wallikeri were determined at 38 loci, such as c.711. Moreover, the A > T base substitution at c.1428 was a nonsynonymous mutation, resulting in amino acid variation of T476S in the 476th position. Compared with sequence of P. o. wallikeri, the double nonsynonymous mutations of G > A and A > T at the sites of c.1186 and c.1428 leads to the variations of D396N and T476S for the 396th and 476th amino acids positions. For P. o. curtisi and P. o. wallikeri, the peptide chains in the coding region from 224th aa to 725th aa of k13 gene merely formed a monomeric spatial model, whereas the double-variant peptide chains of D396N and T476S formed homodimeric spatial model.ConclusionThe propeller domain of k13 gene in the P. ovale isolates imported into Yunnan Province from Myanmar and Africa showed high differentiation. The sequences of Myanmar-imported isolates belong to P. o. curtisi, while the sequences of African isolates showed the sympatric distribution from P. o. curtisi, P. o. wallikeri and mutant isolates. The CDS with a double base substitution formed a dimeric spatial model to encode the peptide chain, which is completely different from the monomeric spatial structure to encode the peptide chain from P. o. curtisi and P. o. wallikeri.

Highlights

  • Eighteen imported ovale malaria cases imported from Myanmar and various African countries have been reported in Yunnan Province, China from 2013 to 2018

  • The sequences of Myanmar-imported isolates belong to P. o. curtisi, while the sequences of African isolates showed the sympatric distribution from P. o. curtisi, P. o. wallikeri and mutant isolates

  • The coding DNA sequence (CDS) with a double base substitution formed a dimeric spatial model to encode the peptide chain, which is completely different from the monomeric spatial structure to encode the peptide chain from P. o. curtisi and P. o. wallikeri

Read more

Summary

Introduction

Eighteen imported ovale malaria cases imported from Myanmar and various African countries have been reported in Yunnan Province, China from 2013 to 2018. All of them have been confirmed by morphological examination and 18S small subunit ribosomal RNA gene (18S rRNA) based PCR in YNRL. The subtypes of Plasmodium ovale could not be identified based on 18S rRNA gene test, posing challenges on its accurate diagnosis. The increase of imported ovale malaria cases are a cause of concern in non-endemic and malaria-free countries. All the 109 ovale malaria diagnosed in Jiangsu Province of China between 2011 and 2014 originated from Africa [5]. Among the influencing factors of the increased incidence of ovale malaria, the diagnostic error due to excessive reliance on microscopy to identify species of malaria parasite could not be fully ruled out

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call