Abstract
Twenty-three sequence haplotypes spanning the boundary of the second exon and intron of a red-winged blackbird Mhc class II B gene, Agph-DAB1, are presented. The polymorphism of the exon segment is distributed in two divergent allelic lineages which appear to be maintained by balancing selection. The silent nucleotide diversity of the exon (pi = 0.101) is more than five times that of the intron (pi = 0.018) and decays rapidly across the exon-intron boundary. Additionally, genealogical reconstruction indicates that divergence from a common ancestor in the exon sample is over four times that of the intron. The intron sequences reveal a pattern of polymorphism which is characteristic of directional selection, rather than a pattern expected from linkage to a balanced polymorphism. These results suggest that the evolutionary histories of these two adjacent regions have been disassociated by recombination or gene conversion. The estimated population recombination parameter between the exon and the intron is sufficiently high (4NeC = 8.545) to explain the homogenization of intron sequences. Compatibility analyses estimate that these events primarily occur from the exon-intron boundary to about 20-30 bases into the intron. Additionally, the observation that divergent exon alleles share identical intron sequence supports the conclusion of disassociation of exon and intron evolutionary histories by recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.