Abstract
Aerial sclerotia of different wild-type strains of Coprinus cinereus differed in their internal structure. The more common of the two polymorphic forms (called the Z-type) had a rind which was only one cell thick; the other form (the H-type) had a rind many cells thick which extended to at least half the diameter of the sclerotium. Visible light microscopy, ultraviolet fluorescence microscopy and scanning electron microscopy were used to characterize the sclerotia formed by a range of dikaryotic mycelia to establish the genetic relationships between the polymorphic structures. The Z-type is the wild-type and genetically dominant form. The H-type is a naturally occurring variant caused by an allele of the gene scl-1 which we designate scl-1 H. The scl-1 H allele is recessive to wild-type but is dominant to the previously known allele of scl-1 (now designated scl-1°). Strains carrying scl-1° fail to produce sclerotia and since its allele scl-1 H causes the formation of sclerotia having an abnormal proliferation of cells, particularly in the rind, it is suggested that the scl-1 gene may normally be involved in the control of the disposition and extent of tissue layers during sclerotium development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.