Abstract
In this paper, a polymorphic uncertain nonlinear programming (PUNP) approach is developed to formulate the problem of maximizing the capacity in a system of V-belt driving with uncertainties. The constructed optimization model is found to consist of a nonlinear objective function and some nonlinear constraints with some parameters which are of uncertain nature. These uncertain parameters are interval parameters, random interval parameters, fuzzy parameters or fuzzy interval parameters. To find a robust solution of the problem, a deterministic equivalent formulation (DEF) is established for the polymorphic uncertain nonlinear programming model. For a given satisfaction level, this DEF turns out to be a nonlinear programming involving only interval parameters. A solution method, called a sampling based interactive method, is developed such that a robust solution of the original model with polymorphic uncertainties is obtained by using standard smooth optimization techniques. The proposed method is applied into a real-world design of V-belt driving, and the results indicate that both the PUNP approach and the developed algorithm are useful to the optimization problem with polymorphic uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.