Abstract

Abstract Despite the emergence of immunotherapy for the treatment of cancer, many of the fundamental mechanisms which characterize tumors that are amenable to immunotherapy and/or drive superior endogenous anti-tumor immune responses likely remain uncharacterized. We have identified a single-nucleotide polymorphism, rs13205210, in the gene encoding UHRF1BP1 (UBP). This polymorphism is associated with a dramatic survival benefit in ovarian cancer patients. The function of the protein encoded by this gene remains elusive, however we demonstrate UBP-ablated ovarian tumor cells display global modulation of methylated cytosine, suggesting it has a role as an epigenetic integrator. Interestingly, this polymorphism is also associated with systemic lupus erythematosus, an immune-driven pathology. Accordingly, we demonstrate that human ovarian tumors with polymorphic UBP display increased frequency of activated CD8+ T cells, as well as a type I IFN signature. In vivo, inducible autochthonous murine ovarian tumors driven by oncogenic Kras and ablation of p53, in which UBP was conditionally deleted, demonstrated a significantly enhanced overall survival with a concomitant type I IFN and CXCR3-chemokine signature, as well as an enhanced T cell infiltrate compared to controls. RNA-seq analyses of UBP-deficient ovarian tumors revealed an elevation of inflammatory cytokines and the activation of canonical inflammatory pathways. Furthermore, ectopic expression of polymorphic human UBP in ovarian tumor cells drove elevated NF-kB signaling under inflammatory conditions. Overall our work suggests that UBP functions as a regulator of inflammation, which is unleashed in the polymorphic variant leading to enhanced anti-tumor immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call