Abstract
Players begin games at different skill levels and develop their skill at different rates so that even the best-designed games are uninterestingly easy for some players and frustratingly difficult for others. A proposed answer to this challenge is Dynamic Difficulty Adjustment (DDA), a general category of approaches that alter games during play, in response to player performance. However, nearly all these techniques are focused on basic parameter tweaking, while the difficulty of many games is connected to aspects that are more challenging to adjust dynamically, such as level design. Further, most DDA techniques are based on designer intuition, which may not reflect actual play patterns. Responding to these challenges, we present Polymorph, which employs techniques from level generation and machine learning to understand game component difficulty and player skill, dynamically constructing a 2D platformer game with continually-appropriate challenge. We believe this will create a play experience that is unique because the changes are both personalized and structural, while also providing an example of a promising new research and development approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.