Abstract

Using hybrid Monte Carlo molecular simulations, we study crystallization from the melt of softly repulsive spheres interacting through an inverse power law potential. We work at fixed supercooling (i.e., at a temperature 25% below the melting temperature) and consider three systems, defined by different values for the inverse power exponent n: n = 5, n = 6.67, and n = 10. Modifying the value of n allows us to study the onset of crystallization in the domain of stability of the body-centered cubic (bcc) phase (n = 5 and n = 6.67) and in the domain of stability of the face-centered cubic (fcc) phase (n = 10). We show that, for the three systems, polymorph selection does not take place during crystal nucleation since the structure of the critical nuclei obtained for the three systems is not well defined. However, our results demonstrate that polymorph selection takes place during the growth step since growth proceeds either into the stable bcc phase for the two smaller values of n (n = 5 and n = 6.67) or into the stable fcc phase for the larger value of n (n = 10). We also show that we did not achieve complete control of polymorphism for n = 10. The growth step gives rise to either slowly growing crystallites composed of two blocks of different structures (the stable fcc form and the metastable bcc form) or rapidly growing crystallites of the metastable bcc form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.