Abstract

We report a new polymorph of lithium aluminum pyrophosphate, LiAlP2O7, discovered through a computationally guided synthetic exploration of the Li-Mg-Al-P-O phase field. The new polymorph formed at 973 K, and the crystal structure, solved by single-crystal X-ray diffraction, adopts the orthorhombic space group Cmcm with a = 5.1140(9) Å, b = 8.2042(13) Å, c = 11.565(3) Å, and V = 485.22(17) Å3. It has a three-dimensional framework structure that is different from that found in other LiMIIIP2O7 materials. It transforms to the known monoclinic form (space group P21) above ∼1023 K. Density functional theory (DFT) calculations show that the new polymorph is the most stable low-temperature structure for this composition among the seven known structure types in the AIMIIIP2O7 (A = alkali metal) families. Although the bulk Li-ion conductivity is low, as determined from alternating-current impedance spectroscopy and variable-temperature static 7Li NMR spectra, a detailed analysis of the topologies of all seven structure types through bond-valence-sum mapping suggests a potential avenue for enhancing the conductivity. The new polymorph exhibits long (>4 Å) Li-Li distances, no Li vacancies, and an absence of Li pathways in the c direction, features that could contribute to the observed low Li-ion conductivity. In contrast, we found favorable Li-site topologies that could support long-range Li migration for two structure types with modest DFT total energies relative to the new polymorph. These promising structure types could possibly be accessed from innovative doping of the new polymorph.

Highlights

  • All-solid-state Li batteries are a promising avenue to significantly advance Li-ion battery technology, for electric vehicle applications.[1]

  • We discovered an orthorhombic polymorph of LiAlP2O7 (CCDC 2026861) while attempting to synthesize Li5MgAl2P7O24, the composition at which a probe structure had been identified

  • We considered the energies of quinary compositions that are slightly off-stoichiometric from the respective pure binary oxides (Figure 1b)

Read more

Summary

INTRODUCTION

All-solid-state Li batteries are a promising avenue to significantly advance Li-ion battery technology, for electric vehicle applications.[1]. The relationships among these structure types are important in the search for new structural frameworks suited toward Li-ion conductivity if some structure types within the family exhibit potential for better Li-site connectivity In such cases, attempts at chemical modifications of a composition that forms in one structure type could be made to achieve a more promising structure type

EXPERIMENTAL SECTION
RESULTS AND DISCUSSION
CONCLUSIONS
■ ACKNOWLEDGMENTS
■ REFERENCES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.