Abstract

The mononuclear diiodoplatinum(II) complex (trans-PtI2(cis-DHDAMe)2), where cis-DHDAMe = cis-1,4-dihydro-1,4-dimethyl-2,3,5,6-tetrakis(methoxycarbonyl)-1,4-diarsinine, forms three different crystalline polymorphs that can be either concomitantly or separately obtained on varying the recrystallization conditions. Cubic red crystals (α-phase) and red-orange needles (β-phase) exhibit solid-state red emissions at room temperature. Cubic red crystals of the γ-phase show no solid-state emission at room temperature. All crystalline structures were confirmed by X-ray crystallography. Room-temperature strongly luminescent crystals (α-phase) (λem = 657 nm, Φ = 0.52) have a triclinic P1 (No. 2) structure and no voids in the crystal structure. Red-orange needle-shaped crystals of the β-phase exhibit moderate red luminescence (λem = 695 nm, Φ = 0.09) at room temperature and have a trigonal, R3 (No. 148), structure. In the needlelike crystals of the β-phase, stable hexagonal arrays of nanoporous channels, 5.0 Å in diameter, are formed. Room-temperature nonluminescent crystals (γ-phase) have an orthorhombic, Pbca (No. 61), structure with a void volume that is 4.9% of the total crystal volume. After heating the α-phase crystals at 150 °C for 2 min, a powder XRD pattern different from the original crystal is obtained, and its solid-state emission at room temperature decreased. After heating the β-phase crystals at 150 °C for 2 min, the emission wavelength and the quantum yield of the solid-state emission at room temperature and the powder XRD pattern are the same as those of the α-phase after heating at 150 °C. A crystal-to-crystal transition triggered by the thermal stimulus produces a different stable polymorph of the mononuclear diiodoplatinum(II) complex. The one-dimensional nanoporous crystals encapsulated iodine without distorting the crystal packing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.