Abstract

BackgroundDiabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections.Methods and FindingsUsing a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp.ConclusionsIn this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP). Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections. Further work is definitely warranted and needed in order to prove whether the FEPs concept is a viable hypothesis. The findings here also suggest that traditional culturing methods may be extremely biased as a diagnostic tool as they select for easily cultured organisms such as Staphylococcus aureus and against difficult to culture bacteria such as anaerobes. While PCR methods also have bias, further work is now needed in comparing traditional culture results to high-resolution molecular diagnostic methods such as bTEFAP.

Highlights

  • Chronic human infections, including chronic wounds, constitute 60–80% of all human infectious diseases [1]

  • In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP)

  • We introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. Individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections

Read more

Summary

Introduction

Chronic human infections, including chronic wounds, constitute 60–80% of all human infectious diseases [1]. Diabetic foot ulcer infection followed by amputation contribute dramatically to the morbidity among persons with diabetes [8] but are associated with severe clinical depression and dramatically increased mortality rates [9]. Such infected ulcers resulting in amputation account for a threefold increased risk of death within 18 months. Diabetic extremity ulcers are associated with chronic infections Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. We seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call