Abstract

The synthesis and characterization of a novel polymethacylate polymer with covalently linked Al(III)-tetraphenylporphyrin (Al(III)-TPP) groups is reported. The new polymer is examined as a potential macromolecular ionophore for the preparation of polymeric membrane-based potentiometric and optical fluoride selective sensors. To prepare the polymer, an Al(III) porphyrin monomer modified with a methacrylate functionality is synthesized, allowing insertion into a polymethacrylate block copolymer (methyl methacrylate and decyl methacrylate) backbone. The resulting polymer can then be incorporated, along with appropriate additives, into conventional plasticized poly(vinyl chloride) films for testing electrochemical and optical fluoride response properties. The covalent attachment of the Al(III)-TPP ionophore to the copolymer matrix provides potentiometric sensors that exhibit significant selectivity for fluoride ion with extended lifetimes (compared to ion-selective membrane electrodes formulated with conventional free Al(III)-TPP structure). However, quite surprisingly, the attachment of the ionophore to the polymer does not eliminate the interaction of Al(III)-TPP structures to form dimeric species within the membrane phase in the presence of fluoride ion. Such interactions are confirmed by UV/visible spectroscopy of the blended polymeric films. Use of the new polymer-Al(III)-TPP conjugates to prepare optical fluoride sensors by co-incorporating a lipophilic pH indicator (4′,5′-dibromofluorescein octadecyl ester; ETH7075) is also examined and the resulting optical sensing films are shown to exhibit excellent selectivity for fluoride, with the potential for prolonged operational lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.