Abstract

Massive stratiform zinc-lead-copper sulfide ores, in association with cordierite-anthophyllite rocks, occur in adjacent localities of Ambaji and Deri, in Western India. The metasedimentary country rocks, interlayered with amphibolites and intruded by acidic to intermediate plutonic rocks, belong to the Precambrian Delhi Supergroup. The ore minerals identified by detailed mineragraphic studies include: sphalerite, galena, chalcopyrite, pyrite, pyrrhotite (both monclinic and hexagonal phases), magnetite, ilmenite, rutile, arsenopyrite, molybdenite, cubanite, mackinawite, boulangerite, gudmundite, meneghinite, lautite, tenantite, native bismuth, native silver, chalcocite and covellite. The common sulfide-silicate schistosity in the ores, flowage of sulfide streaks and tails around rotated poikiloblasts and in their pressure shadow region developed during early folding (F1) and regional metamorphism of the rocks under green schist facies condition. These were superimposed by a pervasive hornfelsic fabric involving sulfides and silicates and including microfabrics due to annealing and grain growth in sulfides, during a subsequent phase of low pressure thermal metamorphism and related tectonism (F2). Finally certain deformation features and some uncommon fabrics like martensitic lamellae in galena and subgrains in sphalerite developed during a mild deformation episode (F3) in the waning stages of tectonism in the area. Compositional change in the ores during thermal metamorphism was minimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.