Abstract
Abstract Muscovite‐poor pelitic schists in the wallrocks of the Proterozoic Annex sulphide deposit, near Prieska, South Africa, contain peak metamorphic assemblages including Crd + Bt + Sil, St + Sil + Bt, Crd + St + Bt and, rarely, Ky + St ° Crd. All rocks include oligoclase, quartz and commonly Fe–Mn garnet, with or without muscovite. Peak assemblages, assigned to M2 regional metamorphism in the Gordonia Belt (Namaqua Province), are syn‐ to post‐kinematic with respect to the main S2 fabric although larger staurolite grains contain S1 inclusion trails. Garnet–biotite thermometry, utilizing corrections for Fe3+, Mn, AlVI and Ti, yields peak temperatures of 571–624°C at pressures of 4.5–6.0 kbar. Consideration of the sympathetic variation of XMn in garnet with XMg in biotite and the preserved zoning patterns in prograde garnets, together with the inferred prograde transition from kyanite to sillimanite, indicates that heating occurred during mild decompression to the M2 metamorphic peak. Sillimanite and cordierite grew last in the prograde sequence, possibly related to a pulse of thermal metamorphism (M3) that is found along the margin of the Keimoes Suite batholith to the north.Retrograde assemblages, including Ms + Ky + Chl + Qtz (after Crd + Bt), Ky + Ms (after Sil) and Chl + Ms (after St) indicate a period of isobaric cooling (M4a) terminated by rehydration in the kyanite stability field at about 500°C.The size difference between prograde (1–2‐mm) and retrograde (0.05–0.1‐mm) mineral grains indicates substantial undercooling below equilibrium positions of relevant retrograde reactions prior to rehydration, and explains why cordierite that grew during M2 is almost completely destroyed. Post‐M4a regrowth of staurolite and garnet (M4b) is spatially linked to sites of M4a rehydration. It reached temperatures of 510–530°C, remaining within the stability field of kyanite.A best fit of the observed textural history to the Namaqua orogenic cycle involves collision and heating (M2/D2) followed by granite intrusion (M3), rifting (M4a) and renewed heating due to crustal loading during volcanism (M4b). The P–T path for the Annex region is consistent with those derived from elsewhere in the Gordonia Belt and, with modification, to that published already for the nearby Prieska Copper Mines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.