Abstract

Hysteresis is a critical factor that plays a significant role in determining the electro-optical performance of display devices, especially in polymer-stabilized blue phase liquid crystal devices (PSBPLCDs). The presence of hysteresis limits the accuracy of device operation and affects its long-term stability. To address this challenge, we have employed a few short-chain monofunctional methacrylate monomers at an appropriate concentration to form microscale network holes in PSBPLCDs. These PSBPLCDs with microscale network holes show low hysteresis (<0.5 %) for networks with non-smooth surfaces and even ultra-low hysteresis (∼0.02 %) for networks with smooth surfaces. The PSBPLCDs exhibit a wide temperature range exceeding 85 °C and have similar response times to that of conventional PSBPLCDs. Moreover, these PSBPLCDs have a low hysteresis and small residual birefringence even after undergoing 2,000,000 driving cycles. These research results are significant in determining the appropriate selection of monofunctional monomers for the design and development of PSBPLCDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.