Abstract

Engineering the membrane of the polymersomes with biologically relevant stimuli-responsive units enables spatial and temporal controlled drug release for effective therapy. Herein, we introduce a new-type of polymersomes featuring reactive oxygen species singlet oxygen (1O2)-labile membrane by employing a versatile stereoregular amphiphilic poly(ethylene glycol)-block-poly(β-aminoacrylate)-block-poly(ethylene glycol) copolymers, which are synthesized through a facile one pot modular amino-alkynoate click polymerization between secondary amines and activated alkynes. These polymersomes readily co-encapsulate an anticancer drug doxorubicin (DOX) and a near infrared (NIR) photosensitizer IR-780 with hydrophobic characteristics in the membrane, and the resulting polymersomes show efficient uptake by the tumor cells. NIR light irradiation on the tumors, following intraperitoneal injection of the IR-780/DOX co-encapsulated polymersomes, facilitates tumor-specific release of DOX through disassembly of the polymersome nanostructure via 1O2-mediated photocleavage of the membrane. Moreover, IR-780 dye can convert NIR light energy into heat in addition to the generation of 1O2, thus allows to realize both photothermal and photodynamic therapy. Accordingly, the NIR light-mediated on demand chemotherapy, in combination with appreciable phototherapy, of IR-780/DOX co-loaded polymersomes demonstrate an efficient tumor suppression in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.