Abstract

Following a biomimetic approach, we present here polymer vesicles (polymersomes) with ion selective permeability, achieved by inserting gramicidin (gA) biopores in their membrane. Encapsulation of pH-, Na+- and K+- sensitive dyes inside the polymersome cavity was used to assess the proper insertion and functionality of gA inside the synthetic membrane. A combination of light scattering, transmission electron microscopy, and fluorescence correlation spectroscopy was used to show that neither the size, nor the morphology of the polymersomes was affected by successful insertion of gA in the polymer membrane. Interestingly, proper insertion and functionality of gA were demonstrated for membranes with thicknesses in the range 9.2–12.1 nm, which are significantly greater than membrane lipid counterparts. Both polymersomes with sizes around 100 nm and giant unilamellar vesicles (GUVs) with inserted gA exhibited efficient time response to pH- and ions and therefore are ideal candidates for designing nanoreactors or biosensors for a variety of applications in which changes in the environment, such as variations of ionic concentration or pH, are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.