Abstract

There is an increasing interest in biocatalysis to perform chemical reactions in biphasic systems, consisting of an aqueous phase and a water-immiscible organic solvent or ionic liquid. In most cases, the hydrophobic phase is used as reservoir for poorly water-soluble substrates or for in situ product removal. However, many enzymes are solvent-sensitive and cannot be used in such systems. In this study, the solvent-sensitive enzyme mandelate racemase is exemplarily protected from the organic phase by its entrapment in (crosslinked) polymersomes. The covalent crosslinking of the individual chains of the block copolymer poly(2-methyloxazoline)15 -poly(dimethylsiloxane)68 -poly(2-methyloxazoline)15 via terminal methacrylates leads to enhanced membrane stability. This effect is especially pronounced for long-time incubation in the presence of organic solvents and ionic liquids. By using a gentle polymerization initiator at its minimal necessary concentration, the prior encapsulated enzymes remain intact during crosslinking. Although the insertion of natural channel proteins into the membrane improves the mass transport into the vesicles, it is non-essential. Mandelate racemase in (crosslinked) polymersomes remains active in different highly dispersed biphasic systems for more than 24h. The free enzyme, on the other hand, gets completely inactivated within 1h, thus illustrating the potential of polymersomes as nanoreactors in biphasic reaction setups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call