Abstract
The exact grand-canonical solution of a generalized interacting self-avoid walk (ISAW) model, placed on a Husimi lattice built with squares, is presented. In this model, beyond the traditional interaction between (nonconsecutive) monomers on nearest-neighbor (NN) sites, an additional energy is associated to next-NN (NNN) monomers. Three definitions of NNN sites/interactions are considered, where each monomer can have, effectively, at most two, four, or six NNN monomers on the Husimi lattice. The phase diagrams found in all cases have (qualitatively) the same thermodynamic properties: a non-polymerized (NP) and a polymerized (P) phase separated by a critical and a coexistence surface that meet at a tricritical (θ-) line. This θ-line is found even when one of the interactions is repulsive, existing for in the range , i.e., for in the range . Thus, counterintuitively, a θ-point exists even for an infinite repulsion between NN monomers (), being associated to a coil–‘soft globule’ transition. In the limit of an infinite repulsive force between NNN monomers, however, the coil–globule transition disappears, and only NP–P continuous transition is observed. This particular case, with , is also solved exactly on the square lattice, using a transfer matrix calculation where a discontinuous NP–P transition is found. For attractive and repulsive forces between NN and NNN monomers, respectively, the model becomes quite similar to the semiflexible-ISAW one, whose crystalline phase is not observed here, as a consequence of the frustration due to competing NN and NNN forces. The mapping of the phase diagrams in canonical ones is discussed and compared with recent results from Monte Carlo simulations on the square lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.