Abstract

Antibacterial materials containing biocides suffer from the fact that biocides are usually quickly released and hence display a limited antibacterial ability over a long period of time. To overcome this problem, the antibacterial agent 6-chloropurine is conjugated to a monomer via a hemiaminal ether linkage. The functional monomer is then reacted with a urethane acrylate by photopolymerization to yield thin polymer coatings. The release of the antibacterial agent from the coatings is sustained due to the slow kinetics of the hydrolysis of the hemiaminal ether linkage. Antibacterial performance is achieved against S. aureus and E. coli bacteria. This simple strategy can be applied for the rapid preparation of antibacterial coatings on various substrates and other applications such as antifouling or anticorrosion coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.