Abstract

AbstractNumerous BuSnCl, Bu2SnCl, and Bu3SnCl‐initiated polymerizations of cyclo(tri‐methylene carbonate) (TMC) were conducted in bulk. In addition to the initiator, reaction time, temperature, and monomer/initiator (M/I) ratio were varied. Yields above 90% were obtained with all three initiators, but their reactivities decrease in the order BuSnCl3 > Bu2SnCl2 > Bu3SnCl. The maximum molecular weights decrease in the same order. With BuSnCl3 Mws up to 250,000 were obtained. These molecular weights were determined by GPC on the basis of the universal calibration method. In this connection Mark‐Houwink equations for two solvents, tetrahydrofuran (THF) and CH2Cl2 were determined and compared with literature data. Furthermore, mechanistic aspects were studied. 1H‐ and 13C‐ NMR spectra revealed that BuSnCl3 forms complexes with the CO‐group of TMC, whereas Bu2SnCl3 do not cause NMR spectroscopic effects. Kinetic studies in chloroform and nitrobenzene and a comparison with Bu3SnOMe suggest that at least BuSnCl3 initiates a cationic mechanism. However, in contrast to SnCl4 (or SnBr4), BuSnCl3 does not cause decarboxylation. Regardless of the initiator 1H‐NMR spectroscopy revealed CH2OH and CH2CI endgroups in all cases. © 1995 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.