Abstract

BackgroundUse of bioscaffolds to direct osteogenic differentiation of adult multipotent stromal cells (MSCs) without exogenous proteins is a contemporary approach to bone regeneration. Identification of in vivo osteogenic contributions of exogenous MSCs on bioscaffolds after long-term implantation is vital to understanding cell persistence and effect duration.MethodsThis study was designed to quantify in vivo equine MSC osteogenesis on synthetic polymer scaffolds with distinct mineral combinations 9 weeks after implantation in a murine model. Cryopreserved, passage (P)1, equine bone marrow-derived MSCs (BMSC) and adipose tissue-derived MSCs (ASC) were culture expanded to P3 and immunophenotyped with flow cytometry. They were then loaded by spinner flask on to scaffolds composed of tricalcium phosphate (TCP)/hydroxyapatite (HA) (40:60; HT), polyethylene glycol (PEG)/poly-l-lactic acid (PLLA) (60:40; GA), or PEG/PLLA/TCP/HA (36:24:24:16; GT). Scaffolds with and without cells were maintained in static culture for up to 21 days or implanted subcutaneously in athymic mice that were radiographed every 3 weeks up to 9 weeks. In vitro cell viability and proliferation were determined. Explant composition (double-stranded (ds)DNA, collagen, sulfated glycosaminoglycan (sGAG), protein), equine and murine osteogenic target gene expression, microcomputed tomography (μCT) mineralization, and light microscopic structure were assessed.ResultsThe ASC and BMSC number increased significantly in HT constructs between 7 and 21 days of culture, and BMSCs increased similarly in GT constructs. Radiographic opacity increased with time in GT-BMSC constructs. Extracellular matrix (ECM) components and dsDNA increased significantly in GT compared to HT constructs. Equine and murine osteogenic gene expression was highest in BMSC constructs with mineral-containing scaffolds. The HT constructs with either cell type had the highest mineral deposition based on μCT. Regardless of composition, scaffolds with cells had more ECM than those without, and osteoid was apparent in all BMSC constructs.ConclusionsIn this study, both exogenous and host MSCs appear to contribute to in vivo osteogenesis. Addition of mineral to polymer scaffolds enhances equine MSC osteogenesis over polymer alone, but pure mineral scaffold provides superior osteogenic support. These results emphasize the need for bioscaffolds that provide customized osteogenic direction of both exo- and endogenous MSCs for the best regenerative potential.

Highlights

  • Use of bioscaffolds to direct osteogenic differentiation of adult multipotent stromal cells (MSCs) without exogenous proteins is a contemporary approach to bone regeneration

  • Radiographs: mineral deposition All polyethylene glycol (PEG)/ poly-L-lactic acid (PLLA) (GA) scaffolds and PEG/PLLA/ tricalcium phosphate (TCP)/HA (GT) scaffolds with adipose tissue-derived MSCs (ASC) or without cells remained radiolucent throughout the study

  • Light microscopy: microstructure Regardless of composition, scaffolds with cells had more Extracellular matrix (ECM) than those without; most ECM deposition was on the implant periphery, and osteoid was apparent in all bone marrow-derived MSCs (BMSC) constructs

Read more

Summary

Introduction

Use of bioscaffolds to direct osteogenic differentiation of adult multipotent stromal cells (MSCs) without exogenous proteins is a contemporary approach to bone regeneration. Given the inherent responsiveness of undifferentiated cells to their surroundings [1, 4, 9], it is vital to confirm in-vitro MSC characteristics in vivo This is especially true since cell-based therapies are designed to enhance bone healing in potentially unfavorable conditions. Mineral-based scaffolds have good biomimetic characteristics, but brittle mechanical properties complicate implant customization, surgical stabilization, and biological incorporation [15]. Scaffolds composed of both synthetic polymers and minerals such as HA and tricalcium phosphate (TCP) have biomimetic characteristics of inorganic matrix but greater flexibility [15, 16]. A scaffold composition that supports consistent, predictable tissue formation by MSCs from distinct tissues and donors is appealing for clinical application

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call