Abstract

This paper reports the preparation of chelating copolymers via grafting of acrylic acid, and/or acrylamide onto polyester microfiber (PETMF) fabrics using a γ‐radiation technique. The effect of monomer concentration on the grafting process at irradiation dose 20 kGy was studied. The prepared graft chains (PETMF‐g‐AA), (PETMF‐g‐AAm), and (PETMF‐g‐PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The effect of grafting on mechanical properties of PETMF and its copolymer–metal complexes was investigated. The prepared chelating copolymers and their metal complexes were characterized using x‐ray (energy dispersive x‐ray, EDX), differential scanning calorimeter (DSC), color parameters, and electrical conductivity measurements. The possibility of practical uses for such prepared graft copolymer–metal complexes was discussed and determined. The observed results showed that the electrical conductivity of the grafted copolymers and their metal complexes are thermally activated. Moreover, the degree of grafting enhanced the conductivity values of the grafted and non‐complexed copolymer up to three orders of magnitude, on the other hand, the conductivity of the copolymer–metal complexes slightly increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call