Abstract

To investigate anti-solvent crystallization and growth mechanism of nitrendipine spherical crystals in an aqueous solution containing polymeric additives. Size and shape of crystals were investigated using laser diffractometry, optical microscopy and scanning electron microscopy (SEM). Crystalline form was determined by X-ray powder diffractometer (XRPD). During crystal growth, morphological changes at different time points were observed using SEM. Morphology of nitrendipine crystals was affected by polymers and temperature. Monodispersed micro-spherical crystals were obtained when polyvinyl alcohol (PVA) and PEG 200 were present in crystallization medium at 2°C. During crystallization, large number of amorphous nanoparticles was first observed, followed by aggregation into a core for spherical crystals. Once crystalline state was achieved, rapid growth on core surface was observed with amorphous particles acting as a reservoir allowing formation of star-like particles with needle-like subunits. Spherical crystals were formed by filling the gap between needle-like distinct crystalline units of star-like templates with molecules from dissolved amorphous particles. Monodispersed nitrendipine spherical crystals were obtained using carefully controlled conditions. A mechanism for the nitrendipine spherical crystal growth is suggested. These findings provide a new insight into spherulitic crystallization of active pharmaceutical ingredients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.