Abstract

We report a reversible-deactivation radical copolymerization of styrene and methyl acrylate in the presence of tributylborane and different p-quinones. p-Quinones, such as 1,4-naphthoquinone, 2,3-dimethyl-1,4-benzoquinone, 2,5-ditert-1,4-butylbenzoquinone, and duroquinone, with addition of a catalytic amount of tributylborane, allow for the control over styrene/methyl acrylate copolymerization. The process proceeds in a controlled manner via a reversible homolytic dissociation of the active macromolecules with terminal aryloxyboron-groups. The rate of styrene/methyl acrylate copolymerization depends on the inhibition constants of quinones. The molecular weight and molecular weight distribution of copolymers are directly dependent on the inhibitory abilities of the quinones. 1,4-Naphthoquinone and 2,3-dimethyl-1,4-benzoquinone act as the most effective mediators of chain propagation. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that the macromolecules contained internal fragments of p-quinone. Also, of the terminal aryloxyboron-groups were detected in the mass spectra. On realization of the “living” mechanism of copolymerization, the structure of copolymers obtained at high conversions can be considered as similar to the gradient structure. Stereo-regularity of the copolymers differed from the conventional radical copolymerization. The glass-transition temperature (Tg) of the gradient copolymer differed from Tg of the random compositional heterogeneous copolymer. The effect of the macromolecular structure on the mechanical properties of the copolymers was studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call