Abstract

ObjectiveResin-based composites are widely used in dental restorations; however, their volumetric shrinkage during polymerization leads to several issues that reduce the restoration survival rates. For overcoming this problem, a deep study of shrinkage phenomena is necessary. MethodsIn this study, micro-tomography (μ-CT) is combined with digital volume correlation (DVC) to investigate the effect of several factors on the polymerization strain of dental composites in model cavities: the presence/absence of an adhesive, the use of transparent/blackened cavities, and irradiation times between 1 and 40s. ResultsThe results indicate that the presence of an adhesive at the interface between the cavity and composite does not reduce the total strain but instead limits it to a preferential direction. In addition, regardless of the conditions, the main strain is generated along the axis parallel to the polymerization irradiation (the vertical axis). Finally, the total strain appears to occur in the first 5s of irradiation, with no further evolution observed for longer irradiation times. SignificanceThis work provides new insight into resin-based composite shrinkage and demonstrates the benefit of coupling DVC and μ-CT to better understand the degradation mechanisms of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call